

Dan Gomez Blanco, New Relic
Juraci Paixão Kröhling, OllyGarden

There's a Lot of Bad Telemetry
Out There

Speakers

Dan Gomez Blanco

● Principal Observability Architect
@ New Relic

● OTel SIG End-User Maintainer
● Emeritus OTel GC
● https://dangb.me
● Author of

Practical OpenTelemetry

Juraci Paixão Kröhling

● Software Engineer
@ OllyGarden

● OTel Governance Committee
● CNCF Ambassador
● Organizer OTel Night Berlin
● Emeritus: OTel Collector, Jaeger
● Telemetry Drops: LinkedIn,

YouTube

https://dangb.me

Agenda

● What is telemetry?
● What is bad telemetry?
● Case #1: Fast responses, long traces in async workloads
● Case #2: Health check traces

What is telemetry?

What is telemetry?

observability /əbˌzɜːvəˈbɪləti/
noun

1 Extent to which the internal state of a system can be inferred
from observations of its external outputs.

telemetry /təˈlɛmətri/
noun

1 The external outputs... (see observability).

What is a system?

Could be a single service.

However, it rarely is… Your service
is here

Your users
are here

What telemetry do we need?

What telemetry do we need?

What telemetry do we need?

What telemetry do we need?

What telemetry do we need?

What telemetry do we need?

What telemetry do we need?

This person really does not care
about your memory usage issues,
you need domain-specific telemetry!

Instrumentation

Instrumentation

Code that generates telemetry from
our programs, with the purpose of
enabling humans and agents to

understand application behavior at
runtime.

What is
bad telemetry?

Bad Telemetry

��
Telemetry that doesn’t
help in the goal of
understanding the
state of an application

Usefulness ⚠ Noise

Worse yet if it delays
resolutions

��Costs and PII

Even worse: if it breaks
your bank or risks
penalties

Case #1
Fast responses,

long traces

Fast responses, long traces

Why is this bad telemetry?

⏱
The trace duration has
no relation to the main
operation, or user
experience

Misleading
duration �� 💫 Difficult

visualisation

Long traces and big
gaps are not the most
readable

��
Flawed
parent/child
model

Spans are only
causally related, with
no side-effects

��Inconsistent tail
sampling

Orphan spans, storing
half of a trace or, even
worse, storing lots of
long traces that are
perfectly “normal”

Some past nightmares common cases

��
Producer/consumer
spans not following
Semantic Conventions
for messaging systems

Messaging
instrumentation �� Gotchas in async

frameworks ��Busy/scheduled
thread pools �� Tinkering with

Context state

E.g. reusing JS
Promise instances in
lazy-loaded recursive
pollers = infinite traces

Fire-and-forget tasks
not not awaited by the
caller, picked up by
another thread later

Honestly, just use the
OTel APIs for each
signal unless you really
know what you’re
doing

https://opentelemetry.io/docs/specs/semconv/messaging/messaging-spans

Auto-propagated context

Span wraps the whole method execution

The executors instrumentation lib
automatically wraps the Runnable and
propagates context (i.e. thread-local
vars) to the thread executing async task

asyncSpan inherently gets its context
from the active Span Context, which is
the one propagated from the caller

Fast responses, long traces

Split trace and link spans

Add a Span Link to the current span to
describe the causal relationship

Explicitly make this a root Span, thus
starting a new trace

Traces represent units of work

Traces represent units of work

Traces represent units of work

Case #2

Case #2

● Health-check traces
○ Often single-span traces (but not always!)
○ Almost always with a 200 status code
○ Low business value
○ Noisy: once every few seconds per container/pod
○ Comes with different names, shapes, and forms

Case #2

Case #2

 1 | GET /health/**
 8 | GET /health/{*path}
 14 | GET /health
 17 | GET /api/health/**
 18 | GET /actuator/health/**
 25 | GET /v1/health/**
 26 | GET /health/liveness
 28 | GET /health/readiness
 30 | GET /v1/health

 34 | GET /REDACTED/health/**
 39 | GET /REDACTED/health/**
 41 | GET /REDACTED/health/**
 42 | GET /REDACTED/health/**
 43 | GET /REDACTED/health/**
 47 | GET /REDACTED/health/**
 49 | GET /REDACTED/health/**
 50 | GET
/REDACTED/actuator/health/**

Case #2

● Hint: “Why it took 5 years to ignore health check endpoints in tracing”
○ https://opentelemetry.io/blog/2025/declarative-config/

https://opentelemetry.io/blog/2025/declarative-config/

Case #2

tracer_provider:

 sampler:

 rule_based_routing:

 fallback_sampler:

 always_on:

 span_kind: SERVER

 rules:

 - action: DROP

 attribute: url.path

 pattern: /actuator.*

Case #2

● OTel Collector with tail-sampling, removing health checks:

Key takeaways

Bad telemetry

��
Reduced observability,
debugging noise, PII
leaks, cost…

Has many
side-effects �� Comes in

many shapes

Leaky context
propagation, verbosity,
inconsistency with
semantic conventions

�� Can be fixed in
many ways

API, SDK, Collector…
you can choose the
most appropriate level

What about governance and compliance?

OpenTelemetry Weaver

🏗 Under construction…

https://github.com/open-telemetry/weaver

Observability by design.
Treat your telemetry like a public API.

https://github.com/instrumentation-score

Measuring and evaluating quality of telemetry
across software systems

https://github.com/open-telemetry/weaver
https://github.com/instrumentation-score

Instrumentation Score

● Instrumentation Score: The Difference Between Telemetry and Good
Telemetry - Juraci Paixão Kröhling, OllyGarden & Michele Mancioppi, Dash0

Thank you!

● We’ll be at the Observatory at different times during KubeCon
● Come talk to us about instrumentation score!
● Got any feedback about this session? Here’s the QR code.

Thank you!

