Observability Day
NORTH AMERICA

RRRRRRRRRRRR

There's a Lot of Bad Telemetry
Out There

Dan Gomez Blanco, New Relic
Juraci Paixao Krohling, OllyGarden

Speakers

Dan Gomez Blanco Juraci Paixao Krohling

e Principal Observability Architect e Software Engineer

@ New Relic @ OllyGarden
OTel SIG End-User Maintainer OTel Governance Committee
Emeritus OTel GC CNCF Ambassador

Organizer OTel Night Berlin
Emeritus: OTel Collector, Jaeger
Telemetry Drops: LinkedIn,
YouTube

https://dangb.me
Author of
Practical OpenTelemetry

Practical
OpenTelemetry

Apress*

https://dangb.me

Observability Day
NORTH AMERICA

e \What is telemetry?

e What is bad telemetry?

e Case #1: Fast responses, long traces in async workloads
e Case #2: Health check traces

RRRRRRRRRRRR

What is telemetry?

What is telemetry?

observability /ab z3:ve bilati/

noun

1 Extent to which the internal state of a system can be inferred
from observations of its external outputs.

telemetry ito’'lemeatri/

noun

' The external outputs... (see observability).

What is a system?

Could be a single service. . - -~ -~ -
However, itrarely is... = = S
T A\ :-i] - is here
Your users) e _—*_'-_l:_:_:~_— N —j_: _{:__ f__—:___r = _

are here L LN B AR ‘

What telemetry do we need?

GET /api/v1/item

What telemetry do we need? e Ay

GET /api/v1/item
|

i I
_ Seman.tlc o
{ conventions

v

system.memory.usage

What telemetry do we need? e Ay

|
,
GET /api/v1/item
|

i I
_ Seman.tlc o
{ conventions

v

system.memory.usage

What telemetry do we need? e Ay

POST 4 — —Exemplars = =
|
POST /api/v1/checkout :
!
GET /api/v1/item
POST ERROR .
13:34:41 INFO Getting offers for item PWKDW112 = o o e - - _ hitp.server.request.duration
13:34:41 ERR Coud not get offers for PWKDW112 Logs in context
13:34:42 ERR High mem, appyling backpressure == i _______ POST/V1IQEt-°ffers
|

i I
_ Seman.tlc o
{ conventions

system.memory.usage

What telemetry do we need? e Ay

POST 4 — —Exemplars = =
|
POST /api/v1/checkout :
!
GET /api/v1/item
POST ERROR .
13:34:41 INFO Getting offers for item PWKDW112 = o o e - - _ hitp.server.request.duration
13:34:41 ERR Coud not get offers for PWKDW112 Logs in context
13:34:42 ERR High mem, appyling backpressure == i _______ POST/V1IQEt-°ffers
| |

. | | .
_ Semantic — - _Contmuous_ R

{ conventions profiling \

system.memory.usage

What telemetry do we need? e Ay

>] Trace Context d Click Checkout button
Application
User POST 4 = —Exemplars = ~‘
POST /api/v1/checkout :
!
GET /api/v1/item
POST ERROR .
13:34:41 INFO Getting offers for item PWKDW112 L SRR R _ hitp.server.request.duration
13:34:41 ERR Coud not get offers for PWKDW112 Logs in context _
13:34:42 ERR High mem, appyling backpressure == i _______ POST/V1IQEt-°ffers
|

. | | .
_ Semantic — - _Contmuous_ R

{ conventions profiling \

system.memory.usage

What telemetry do we need? e Ay

Application
User POST 4 = —Exemplars = ~‘
POST /api/v1/checkout :
This person really does not care
!

about your memory usage issues,
you need domain-specific telemetry! EE e

. X POST ERROR http.server.request.duration
13:34:41 INFO Getting offers for item PWKDW112 L SRR R
13:34:41 ERR Coud not get offers for PWKDW112 L .
ogs in context &
13:34:42 ERR High mem, appyling backpressure P POST/V1IQEt offers

. | | .
_ Semantic — - _Contmuous_ _

{ conventions profiling —\

system.memory.usage

RRRRRRRRRRRR

Instrumentation

Instrumentation

Code that generates telemetry from
our programs, with the purpose of
enabling humans and agents to
understand application behavior at
runtime.

logger.Info("Starting Gaps ",
zap.String("version", version), zap.String("commit", commit), zap.String("date", date),

)

ctx, span := d.tracer.Start(ctx, "consume og.*.in.otlp.>", trace.WithSpanKind(trace.SpanKindConsumer))
defer span.End()

// Record error metrics with error type
p.operationDuration.Record(ctx, duration.Seconds(), metricOpts,
metric.WithAttributes(subjectAttr, attribute.String("error.type", "send_failed")))

What is
bad telemetry?

Observability Day

NORTH AMERICA

[2025-09-10 14:22:01] INFO: It works
[2025-09-10 14:22:02] INFO: Still works
[2025-09-10 14:22:03] INFO: Yep, still working

[2025-09-10 14:23:44] ERROR: Failed

[2025-09-10 14:25:10] DEBUG: User payload: {"user":"alice", "password":"hunter2"}

[2025-09-10 14:26:30] WARN: Something went wrong!!!
StackTrace: java.lang.Exception: oh no
at com.company.module.Class.method(Class.java:42)
at com.company.module.Other.method(Other.java:99)
at com.company. ..

(more 800 lines)

LOGGING HERE
value=1
LOGGING HERE
value=2
LOGGING HERE

value=3

Observability Day
NORTH AMERICA

[2025-09-10 14:22]
[2025-09-10 14:22:
[2025-09-10 14:22:

[2025-09-10 14:23:}

[2025-09-10 14:25: . = ":"hunter2"}
\ N e t

[2025-09-10 14:26:
StackTrace: java.

at com.company.
at com.company.
at com.company.

(more 800 lineg

LOGGING HERE
value=1
LOGGING HERE
value=2
LOGGING HERE

value=3

Bad Telemetry

Usefulness ' Noise Costs and PII
Telemetry that doesn't Worse yet if it delays Even worse: if it breaks
help in the goal of resolutions your bank or risks
understanding the penalties

state of an application

RRRRRRRRRRRR

Case #1
Fast responses,
long traces

Fast responses, long traces e

GET/apiIt =) 2 (N Share & 9 X

trace-splittin

Showingthe sk GET /api/trace-split
Use the search
trace-splitting-demo = November 5 at 10:54am = Trace ID: |§| 9ea392942846e93b2c650692032c7f65 Spans: 3 @

Qv searct Trace details Logs (0)

e |
Trace duration @Backend duration
gg 0 anomalous spans v m O errors v @ 1entity v @ O span (0 links) v O\ Find spans by name or ID

View by Trac 1217 s 1217 s
e———
148 .7 Maximize X
12 = GET /api/trace-split
10s trace-splitting-demo | Duration 159.15 ms
8s 0Oms 2434 ms 4867 ms 7s 10s 12s
z
% 6s Performance Attributes Details Span Links (0)
g S ——
€ 4000 ms Expand all ~ Collapse all Standard Manual (D Reset
2000 ms A durati
v 2 @ GET /apiftrace-split verage duration
15915 ms
Os trace-splitting-demo
150 ms
@ Show in-process spans (3) d00im3 Y
® GET /api/trace <
2 50ms
> t-spli g
S oms
Plot i
10:30am 10:40am 10:50am
c ® Response Time Span event
e 1c-operation-withol pli
u
. c Throughput (rpm)
u N
6
c 4
e
t 2
¢ 0
L]
4 10:30am 10:40am 10:50am

® Throughput Span event

Why is this bad telemetry?

" Flawed
“1t Misleading Difficult parent/child Inconsistent tail
... duration visualisation model sampling

The trace duration has
no relation to the main
operation, or user
experience

Long traces gisuiis
gaps are not
readable

Orphan spans, storing
half of a trace or, even
worse, storing lots of
long traces that are
perfectly “normal”

»

Can\the treasury bear such an expense?

Some past-hightmares-common cases

Messaging Gotchas in async Busy/scheduled Tinkering with

instrumentation frameworks thread pools Context state
Producer/consumer E.g. reusing JS Fire-and-forget tasks Honestly, just use the
spans not following Promise instances in not not awaited by the OTel APlIs for each
Semantic Conventions lazy-loaded recursive caller, picked up by signal unless you really
for messaging systems pollers = infinite traces another thread later know what you're

doing

https://opentelemetry.io/docs/specs/semconv/messaging/messaging-spans

Auto-propagated context e

public class WithoutTraceSplitting {

private static final Tracer tracer = GlobalOpenTelemetry.getTracer(instrumentationScopeName: "trace-splitting-demo");
private static final ScheduledExecutorService scheduler = Executors.newScheduledThreadPool(corePoolSize: 1);

@WithSpan("process-request-without-split")

public static void processRequest() throws InterruptedException {
Thread.sleep(millis: 100); // Simulate some work
startAsyncOperation();

Span wraps the whole method execution

private static void startAsyncOperation() {

77 Schedie taek-te mon nfter 18- seconds The executors instrumentation lib
scheduler.schedule(() -> { < automatically wraps the Runnable and
// Create a child span (parent-child relationship maintained)

Span asyncSpan = tracer.spanBuilder(s: "async-operation-without-split") propagates context (I'e' th_read_local
.startspan(); vars) to the thread executing async task

try (Scope scope = asyncSpan.makeCurrent()) {
Thread.sleep(millis: 2000); // Simulate some work
} catch (InterruptedException e) {
throw new RuntimeException(e);
} finally { asyncSpan inherently gets its context
asyncSpan.end(); . . .
) from the active Span Context, which is

}, delay: 10, TimeUnit.SECONDS); the one propagated from the caller

public static void shutdown() {
scheduler.shutdown();

¥

Fast responses, long traces e

GET/apiIt =) 2 (N Share & 9 X

trace-splittin

Showingthe sk GET /api/trace-split
Use the search
trace-splitting-demo = November 5 at 10:54am = Trace ID: |§| 9ea392942846e93b2c650692032c7f65 Spans: 3 @

Qv searct Trace details Logs (0)

e |
Trace duration @Backend duration
gg 0 anomalous spans v m O errors v @ 1entity v @ O span (0 links) v O\ Find spans by name or ID

View by Trac 1217 s 1217 s
e———
148 .7 Maximize X
12 = GET /api/trace-split
10s trace-splitting-demo | Duration 159.15 ms
8s 0Oms 2434 ms 4867 ms 7s 10s 12s
z
% 6s Performance Attributes Details Span Links (0)
g S ——
€ 4000 ms Expand all ~ Collapse all Standard Manual (D Reset
2000 ms A durati
v 2 @ GET /apiftrace-split verage duration
15915 ms
Os trace-splitting-demo
150 ms
@ Show in-process spans (3) d00im3 Y
® GET /api/trace <
2 50ms
> t-spli g
S oms
Plot i
10:30am 10:40am 10:50am
c ® Response Time Span event
e 1c-operation-withol pli
u
. c Throughput (rpm)
u N
6
c 4
e
t 2
¢ 0
L]
4 10:30am 10:40am 10:50am

® Throughput Span event

Split trace and link spans Sy

public class WithTraceSplitting {

private static final Tracer tracer = GlobalOpenTelemetry.getTracer(instrumentationScopeName: "trace-splitting-demo");
private static final ScheduledExecutorService scheduler = Executors.newScheduledThreadPool(corePoolSize: 1);

@WithSpan("process-request-with-split")

public static void processRequest() throws InterruptedException {
Thread.sleep(millis: 160) ; // Simulate some work
startAsyncOperation();

private static void startAsyncOperation() {
// Schedule task to run after 10 seconds
scheduler.schedule(() -> {

Add a Span Link to the current span to

// Create a NEW root span (not a child) with a link to the parent span . h I I . h
Span asyncSpan = tracer.spanBuilder(s: "async-operation-with-split") descrlbe the causal relations Ip
.addLink(Span.current().getSpanContext())

.setNoParent()
.startSpan();

try (Scope scope = asyncSpan.makeCurrent()) {
Thread.sleep(millis: 2000); // Simulate some work .. .

S (InteprﬁptedExcepmn o 1 Explicitly make this a root Span, thus
throw new RuntimeException(e); starting a hew trace

} finally {
asyncSpan.end();

+

}, delay: 10, TimeUnit.SECONDS);

public static void shutdown() {
scheduler.shutdown();

Traces represent units of work

Observability Day

NORTH AMERICA

GET /api/t
trace-splittin
Showing the slc

Use the search

Qv Searct

View by Trac

8s

6s

(Duration)

4000 ms
2000 ms

Os

® GET /apiftrace

Plot T
€

L]
b
C

L]
t
C

.
t
i

GET /api/trace-split

trace-splitting-demo = November 5 at 10:54am
Trace details Logs (0)

25 Oanomalous spans v [I] Oerrors v

Trace ID: E] 7d0d025ef73587a09e7918ca20ea7707 Spans: 2 @

@ lentity v @ 1span(1link) v QO Find spans by name or ID

2 (N Share & @ X

Trace duration Backend duration

107.47 ms 107.47 ms

7 Maximize

0oms 21ms

Ml @ GET /api/trace-split
trace-splitting-demo

43 ms 64 ms

xpand all ~ Collapse all Standard Manual @ Focus on: | Slow spans Reset

107 ms

107.47 ms

@ Show in-process spans (1)

<|> process-request-with-split

@ @ 10729ms

Traces represent units of work | sabiiy®

GET /api/trace-split
trace-splitting-demo = November 4 at 9:20pm = Trace ID: E] f3b678653b238eae369f2eaed21ffcab Spans: 2 @
Trace details Logs (0)

Trace duration Backend duration

102.58 ms 102.58 ms

oA

05 Oanomalousspans v [1] Oerrors v (3 lentity v @ Tspan(llink) v O Find spans by name or ID

»” Maximize X
i— (process-request-with-split)
i trace-splitting-demo | Duration 102.43 ms
0Oms 21ms 41 ms 62 ms 82 ms 103 ms
<[> Open in IDE
Expand all ~ Collapse all Standard Manual @ Focus on: Slow spans Reset Renfeimatice Afibules: Daialls (SpanlLinks(1)

Q_ Placeholder Text

trace id 4f66932... : Forward
@ Show in-process spans (1) Timestamp . November 4, 2025 9:20pm
Duration : 2005 ms

<|> process-request-with-split
Errors : 0

Traces represent units of work | sabiiy®

GET /api/trace-split

trace-

(async-operation-with-split)
Trac trace-splitting-demo November 4 at 9:20pm = Trace ID: E] 4f66932d8f816c7c00b253bf905d30dd Spans: 1 @

94 (Trace details Logs (0)

Trace duration Backend duration

2005.35ms 2005.35ms

oA

05 Oanomalousspans v [1] Oerrors v (3 lentity v @ 1span(llink) v O Find spans by name or ID

m_ .7 Maximize X
ﬂ (async-operation-with-split)
0
m trace-splitting-demo | Duration 2005.35 ms
0ms 401 ms 802 ms 1203 ms 1604 ms 2005 ms
Performance Attributes Details Span Links (1)
Expand a Collaps Standard Manual @ Focus on: Slow spans es O\ Placeholder Text
@ (async-operation-with-split) B) X
o 2.01 :
trace-splitting-demo @ C S trace id f3b6786... : Backward
_———————————————————————— Timestamp : November 4, 2025 9:20pm
Duration : 103 ms

Errors 0

Case #2

e Health-check traces
o Often single-span traces (but not always!)
o Almost always with a 200 status code
o Low business value
o Noisy: once every few seconds per container/pod
o Comes with different names, shapes, and forms

Case #2

JAEGER Ul

Search Compare System Architecture

Monitor

Observability Day

NORTH AMERICA

About Jaeger v

v GET!/ /healtn/**

1 October 16 2025, 21:53:13. Duration 1.5ms

8 Trace Timeline v

v

Service & Operation v > ¥ »

Ops

374ps 748ys 1.12ms

1.5ms

IS_codé

otel.scof

server.address

iser_agent.origina

> Process: container.id

fgar-srv-fundgar-dadosoutorga ...

1.5ms

‘health/**

GET
200

health/**

51186

1.1

io.opentelemetry.tomcat-10.0

1.33.6-alpha

10.131.91.16

8087

server

44

http-nio-8087-exec-8
/health/liveness

http

kube-probe/1.31

fcd78522¢1c2576a82f8dd39439c07abad76e403d40a098409955f80cdes 79

279balf1ba328915 & Copy

731ps

deployment.environmen...

Time: Ops

OperationHandler.handle ervice I

> Tags: otel.scope.name
> Process: container.id

731ps

io.opentelemetry.spring-webmvc-6.0 otel.scope.version = 1.33.6-alpha
fcd78522¢1¢2576a82f8dd39439c07abad76e403d40a098409955f80cdesff79

span.kind

813103939648a270 & Copy

deployment.environmen...

° 422ps

internal thre...

Case #2

1| GET /health/** 34 | GET /REDACTED/health/**
8 | GET /health/{*path} 39 | GET /REDACTED/health/**
14 | GET /health 41 | GET /REDACTED/health/**
171 GET /api/health/™ 42 | GET /REDACTED/health/**

18 | GET /actuator/health/**
25 | GET /v1/health/**

43 | GET /REDACTED/health/**
47 | GET /REDACTED/health/**

e eness 49 | GET /REDACTED/health/**
28 | GET /health/readiness | ea
50 | GET

30 | GET /vi/health JREDACTED/actuator/health/**

Case #2

e Hint: “Why it took 5 years to ignore health check endpoints in tracing”
o https://opentelemetry.io/blog/2025/declarative-config/

https://opentelemetry.io/blog/2025/declarative-config/

Case #2

tracer provider:
sampler:
rule based routing:

fallback sampler:
always on:

span kind: SERVER

rules:
- action: DROP

attribute: url.path

pattern: /actuator.*

Case #2

e QOTel Collector with tail-sampling, removing health checks:

RRRRRRRRRRRR

Key takeaways

Bad telemetry

Has many Comes in Can be fixed in

side-effects many shapes many ways
Reduced observability, Leaky context API, SDK, Collector...
debugging noise, PlI propagation, verbosity, you can choose the
leaks, cost... inconsistency with most appropriate level

semantic conventions

What about governance and compliance? W

I I instrumentation-score

‘ “ %1 Under construction...

OpenTelemetry Weaver

https://aithub.com/open-telemetry/weaver https://github.com/instrumentation-score

Observability by design. Measuring and evaluating quality of telemetry
Treat your telemetry like a public API. across software systems

https://github.com/open-telemetry/weaver
https://github.com/instrumentation-score

Instrumentation Score

e Instrumentation Score: The Difference Between Telemetry and Good
Telemetry - Juraci Paixao Krohling, OllyGarden & Michele Mancioppi, DashO

Thank you!

e We'll be at the Observatory at different times during KubeCon
e Come talk to us about instrumentation score!
e Got any feedback about this session? Here’s the QR code.

[=]

