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What is telemetry?



What is telemetry?

observability /ab z3:ve bilati/

noun

1 Extent to which the internal state of a system can be inferred
from observations of its external outputs.

telemetry ito’'lemeatri/

noun

' The external outputs... (see observability).



What is a system?

Could be a single service. . - -~ -~ -
However, itrarely is... = = S
T A\ :-i ] - is here
Your users ) e _—*_'-_l:_:_:~_— N —j_: _{:__ f__—:___r = _

are here L LN B AR ‘



What telemetry do we need?

GET /api/v1/item
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What telemetry do we need? e Ay
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What telemetry do we need? e Ay

Application
User POST 4 = —Exemplars = ~‘
POST /api/v1/checkout :
This person really does not care
!

about your memory usage issues,
you need domain-specific telemetry! EE e

. X POST ERROR http.server.request.duration
13:34:41 INFO Getting offers for item PWKDW112 L SRR R
13:34:41 ERR Coud not get offers for PWKDW112 L .
ogs in context &
13:34:42 ERR High mem, appyling backpressure P POST/V1IQEt offers

. | | .
_ Semantic — - _Contmuous_ _

{  conventions profiling —\

system.memory.usage
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Instrumentation



Instrumentation

Code that generates telemetry from
our programs, with the purpose of
enabling humans and agents to
understand application behavior at
runtime.



logger.Info("Starting Gaps ",
zap.String("version", version), zap.String("commit", commit), zap.String("date", date),

)

ctx, span := d.tracer.Start(ctx, "consume og.*.in.otlp.>", trace.WithSpanKind(trace.SpanKindConsumer))
defer span.End()

// Record error metrics with error type
p.operationDuration.Record(ctx, duration.Seconds(), metricOpts,
metric.WithAttributes(subjectAttr, attribute.String("error.type", "send_failed")))




What is
bad telemetry?
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[2025-09-10 14:22:01] INFO: It works
[2025-09-10 14:22:02] INFO: Still works
[2025-09-10 14:22:03] INFO: Yep, still working

[2025-09-10 14:23:44] ERROR: Failed

[2025-09-10 14:25:10] DEBUG: User payload: {"user":"alice", "password":"hunter2"}

[2025-09-10 14:26:30] WARN: Something went wrong!!!
StackTrace: java.lang.Exception: oh no
at com.company.module.Class.method(Class.java:42)
at com.company.module.Other.method(Other.java:99)
at com.company. ..

(more 800 lines)

LOGGING HERE
value=1
LOGGING HERE
value=2
LOGGING HERE

value=3
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[2025-09-10 14:22]
[2025-09-10 14:22:
[2025-09-10 14:22:

[2025-09-10 14:23:}

[2025-09-10 14:25: . = ":"hunter2"}
\ N e t

[2025-09-10 14:26:
StackTrace: java.

at com.company.
at com.company.
at com.company.

(more 800 lineg

LOGGING HERE
value=1
LOGGING HERE
value=2
LOGGING HERE

value=3




Bad Telemetry

Usefulness ' Noise Costs and PII
Telemetry that doesn't Worse yet if it delays Even worse: if it breaks
help in the goal of resolutions your bank or risks
understanding the penalties

state of an application
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Case #1
Fast responses,
long traces



Fast responses, long traces e

GET/apiIt =) 2 (N Share & 9 X

trace-splittin
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Use the search
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Why is this bad telemetry?

" Flawed
“1t Misleading Difficult parent/child Inconsistent tail
... duration visualisation model sampling

The trace duration has
no relation to the main
operation, or user
experience

Long traces gisuiis
gaps are not
readable

Orphan spans, storing
half of a trace or, even
worse, storing lots of
long traces that are
perfectly “normal”

»

Can\the treasury bear such an expense?



Some past-hightmares-common cases

Messaging Gotchas in async Busy/scheduled Tinkering with

instrumentation frameworks thread pools Context state
Producer/consumer E.g. reusing JS Fire-and-forget tasks Honestly, just use the
spans not following Promise instances in not not awaited by the OTel APlIs for each
Semantic Conventions lazy-loaded recursive caller, picked up by signal unless you really
for messaging systems pollers = infinite traces another thread later know what you're

doing


https://opentelemetry.io/docs/specs/semconv/messaging/messaging-spans

Auto-propagated context e

public class WithoutTraceSplitting {

private static final Tracer tracer = GlobalOpenTelemetry.getTracer( instrumentationScopeName: "trace-splitting-demo");
private static final ScheduledExecutorService scheduler = Executors.newScheduledThreadPool( corePoolSize: 1);

@WithSpan("process-request-without-split")

public static void processRequest() throws InterruptedException {
Thread.sleep( millis: 100); // Simulate some work
startAsyncOperation();

Span wraps the whole method execution

private static void startAsyncOperation() {

77 Schedie taek-te mon nfter 18- seconds The executors instrumentation lib
scheduler.schedule(() -> { < automatically wraps the Runnable and
// Create a child span (parent-child relationship maintained)

Span asyncSpan = tracer.spanBuilder( s: "async-operation-without-split") propagates context (I'e' th_read_local
.startspan(); vars) to the thread executing async task

try (Scope scope = asyncSpan.makeCurrent()) {
Thread.sleep( millis: 2000); // Simulate some work
} catch (InterruptedException e) {
throw new RuntimeException(e);
} finally { asyncSpan inherently gets its context
asyncSpan.end(); . . .
) from the active Span Context, which is

}, delay: 10, TimeUnit.SECONDS); the one propagated from the caller

public static void shutdown() {
scheduler.shutdown();

¥



Fast responses, long traces e
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Split trace and link spans Sy

public class WithTraceSplitting {

private static final Tracer tracer = GlobalOpenTelemetry.getTracer( instrumentationScopeName: "trace-splitting-demo");
private static final ScheduledExecutorService scheduler = Executors.newScheduledThreadPool( corePoolSize: 1);

@WithSpan("process-request-with-split")

public static void processRequest() throws InterruptedException {
Thread.sleep( millis: 160) ; // Simulate some work
startAsyncOperation();

private static void startAsyncOperation() {
// Schedule task to run after 10 seconds
scheduler.schedule(() -> {

Add a Span Link to the current span to

// Create a NEW root span (not a child) with a link to the parent span . h I I . h
Span asyncSpan = tracer.spanBuilder( s: "async-operation-with-split") descrlbe the causal relations Ip
.addLink(Span.current().getSpanContext())

.setNoParent()
.startSpan();

try (Scope scope = asyncSpan.makeCurrent()) {
Thread.sleep( millis: 2000); // Simulate some work .. .

S (InteprﬁptedExcepmn o 1 Explicitly make this a root Span, thus
throw new RuntimeException(e); starting a hew trace

} finally {
asyncSpan.end();

+

}, delay: 10, TimeUnit.SECONDS);

public static void shutdown() {
scheduler.shutdown();



Traces represent units of work
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2 (N Share & @ X
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Traces represent units of work | sabiiy®

GET /api/trace-split
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Traces represent units of work | sabiiy®

GET /api/trace-split

trace-

(async-operation-with-split)
Trac trace-splitting-demo  November 4 at 9:20pm = Trace ID: E] 4f66932d8f816c7c00b253bf905d30dd Spans: 1 @

94 ( Trace details Logs (0)

Trace duration Backend duration

2005.35ms 2005.35ms

oA

05 Oanomalousspans v [1] Oerrors v (3 lentity v @ 1span(llink) v O Find spans by name or ID

m_ .7 Maximize X
ﬂ (async-operation-with-split)
0
m trace-splitting-demo | Duration 2005.35 ms
0ms 401 ms 802 ms 1203 ms 1604 ms 2005 ms
Performance Attributes Details Span Links (1)
Expand a Collaps Standard Manual @ Focus on: Slow spans es O\ Placeholder Text
@ (async-operation-with-split) B ) X
o 2.01 :
trace-splitting-demo @ C S trace id f3b6786... : Backward
_———————————————————————— Timestamp : November 4, 2025 9:20pm
Duration : 103 ms

Errors 0






Case #2

e Health-check traces
o Often single-span traces (but not always!)
o Almost always with a 200 status code
o Low business value
o Noisy: once every few seconds per container/pod
o Comes with different names, shapes, and forms



Case #2

JAEGER Ul

Search Compare System Architecture

Monitor
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Case #2

1| GET /health/** 34 | GET /REDACTED/health/**
8 | GET /health/{*path} 39 | GET /REDACTED/health/**
14 | GET /health 41 | GET /REDACTED/health/**
171 GET /api/health/™ 42 | GET /REDACTED/health/**

18 | GET /actuator/health/**
25 | GET /v1/health/**

43 | GET /REDACTED/health/**
47 | GET /REDACTED/health/**

e eness 49 | GET /REDACTED/health/**
28 | GET /health/readiness | ea
50 | GET

30 | GET /vi/health JREDACTED/actuator/health/**



Case #2

e Hint: “Why it took 5 years to ignore health check endpoints in tracing”
o https://opentelemetry.io/blog/2025/declarative-config/



https://opentelemetry.io/blog/2025/declarative-config/

Case #2

tracer provider:
sampler:
rule based routing:

fallback sampler:
always on:

span kind: SERVER

rules:
- action: DROP

attribute: url.path

pattern: /actuator.*



Case #2

e QOTel Collector with tail-sampling, removing health checks:
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Key takeaways



Bad telemetry

Has many Comes in Can be fixed in

side-effects many shapes many ways
Reduced observability, Leaky context API, SDK, Collector...
debugging noise, PlI propagation, verbosity, you can choose the
leaks, cost... inconsistency with most appropriate level

semantic conventions



What about governance and compliance? W

I I instrumentation-score

‘ “ %1 Under construction...

OpenTelemetry Weaver

https://aithub.com/open-telemetry/weaver https://github.com/instrumentation-score

Observability by design. Measuring and evaluating quality of telemetry
Treat your telemetry like a public API. across software systems


https://github.com/open-telemetry/weaver
https://github.com/instrumentation-score

Instrumentation Score

e Instrumentation Score: The Difference Between Telemetry and Good
Telemetry - Juraci Paixao Krohling, OllyGarden & Michele Mancioppi, DashO




Thank you!

e We'll be at the Observatory at different times during KubeCon
e Come talk to us about instrumentation score!
e Got any feedback about this session? Here’s the QR code.

[=]







